Study of voltage-controlled magnetic anisotropy (VCMA) in a FeB thin film and a FeB/W multilayer by the Anomalous Hall effect

V Zayets, A. Fukushima, T. Nozaki, H.Saito, and S.Yuasa

Spintronics Research Center, AIST, Tsukuba, Japan

Voltage-controlled magnetic anisotropy. VCMA effect

2012. 1st high-speed voltage-induced magnetization reversal

Purpose:

1: To clarify **origin** of the voltage-controlled PMA effect in a FeCoB thin film

2: Possible enhancement of the voltage-controlled PMA effect

This work:

1: Measurements of <u>voltage-dependence</u> of **coercive field**, **Hall angle**, **anisotropic field and switching time** in a FeB film and (FeB/W)_n multilayer

> High-reliability, high-precision

2: <u>Enhancement</u> of the voltage-control PMA effect in (FeB/W)_n multilayers

Samples

Measurement of voltage-controlled PMA effect

4 independent measurements. All data are from Hall measurements

Voltage-controlled coercive field

Measurement **1**:

Voltage-controlled anisotropic field Measurement 2:

J. Alzte et al, APL (2013)

negative

Voltage-controlled Hall rotation angle

Ry

7

Anomalous Hall effect

Hall angle depends on:

(1) Spin polarization of conduction electrons (2) Strength of spin-orbit interaction (2a) Magnetization (2b) orbital reconstruction

C.M. Hurd, The Hall Effect in Metals and Alloys, Plenum Press, 1972.

Measurement 4: Voltage-controlled Hall switching time & retention time

when $\frac{H}{H_{anis}} << 1$

FeB/W multilayer

$$E_{PMA} = \frac{1}{2} M \cdot H_{anisotropy}$$

Fitting to existing models

Possible origins

of the effect of voltage-controlled PMA

C.Bi et al, PRL. (2014)

S. Baek et al, Nat. Elect (2018)

Charge accumulation/depletion or the effect of a capacitor

Charge accumulation/depletion or the effect of a capacitor

1: "<u>optimized" measurement method</u> of magnetic properties of a nanomagnet

coercive field (~1 Oe), effective magnetization, Δ , retention time, anisotropic field,

2: Measurements of the voltage-control PMA effect

1. coercive field vs gate voltage : <u>2-11 Oe/V, negative slope</u>
2. Hall angle vs gate voltage : <u>0.01-20 mdeg/V, negative slope</u>
3. Δ vs gate voltage: <u>negative slope</u>
4. Anisotropic field vs gate voltage: <u>50 Oe/V, negative slope</u>

Modulation of Fermi level

4: <u>Enhancement</u> of the voltage-control PMA effect in a FeB/W multilayer

